Thursday, October 24, 2013

AMDR: Raytheon Wins EMD Competition for the USA's Next Dual-Band Radar

DBR testbed, Wallops

(click to view full)




The that equips its forthcoming 14,500t "destroyers" and super-carriers replaces several different radars with a single back-end. Merging Raytheon's X-band SPY-3 with Lockheed Martin's S-band VSR allows fewer radar antennas, faster response time, faster adaptation to new situations, one-step upgrades to the radar suite as a whole, and better utilization of the ship's power, electronics, and bandwidth.



Rather than using the existing Dual-Band Radar design in new ships, however, the "Air and Missile Defense Radar" (AMDR) aimed to fulfill future CG (X)/ DG-51 Flight III cruiser needs through a new competition. It could end up being a big deal for the winning radar manufacturer, and for the fleet. If, and only if, the technical, power, and weight challenges can be mastered at an affordable price.



AMDR: THE PROGRAM



DDG-77 USS O'Kane

(click to view full)



Faced with a growing array of advanced threats, the US Navy confronted a need for more dual-band naval radars among its top-end surface warships. Both CG (X) and FSC were proposed for cancellation in the , but the "Air and Missile Defense Radar" (AMDR) is expected to continue as the radar centerpiece for their true successor: the DDG-51 Flight III Arleigh Burke Class.



Rather than extending or modifying the existing Dual Band Radar combination used on its DDG-1000 Zumwalt Class, aimed to fulfill these need through a re-opened competition. The resulting AMDR radar will have 3 components:



*The AMDR-S radar will provide wide-area volume search, tracking, discrimination, and missile communications. While top-tier air and missile defense vessels are "blue water" ships by nature, critical naval chokepoints and war scenarios don't always give commanders a choice. As such AMDR requirements also call for defense against very low observable/very low flyer (VLO/VLF) threats in heavy land, sea, and rain clutter, where S-band has some advantages.

*The AMDR-X radar will provide horizon search, precision tracing, missile communications, and final illumination guidance to targets. It will be available in AMDR sets 13 onward; the first 12 ship sets will use Northrop Grumman's in-service SPQ-9B radar instead.

*The back-end Radar Suite Controller (RSC) will perform all coordination, ensuring that the radars work well together.



The contractors are designing radar systems with hardware and software modularity, future technology, insertion, and open architectures. The limitations of the DDG-51 ship design forced some flexibility all by itself, and the initial specification added that it's "designed to be scalable to accommodate current and future mission requirements for multiple platforms."



The 1st DDG 51 Flight III destroyer will be part of the FY 2013 - 2017 multi-year award, beginning with long-lead materials ordered in FY 2015, and built as the 2nd ship ordered in FY 2016 (DDG 123). By the end of the multi-year contract, which was issued in May 2013, the USN will have contracted for 3 AMDR/Flt III vessels. Flight III orders are expected to continue to 2022, and possibly through 2031.



Budget documents to date are all for Research, Development, Testing & Evaluation:



AMDR: OPPORTUNITIES AND CHALLENGES



DDG-1000 w. DBR

(click to view full)



That requirement for adjustable size is the key to AMDR's larger opportunity. If the adjustments can be taken far enough, it could give the Navy an opportunity to add or retrofit AMDR to some of its 60+ serving Arleigh Burke Class ships, DDG-1000 Zumwalt Class destroyers, or later carriers of the CVN-78 Gerald R. Ford Class.



The bad news is that any retrofit, or even installation in new "DDG-51 Flight III" variants, will be more complicated than it appears.



The visible face of a naval radar is only the tip of the iceberg. Most of its weight and space comes from its need for 2 things: power, and cooling. More powerful radars usually need more power to drive them, which can tax the limited 7.5 MW capacity an older ship like the DDG-51 Flight I/II/IIAs. More power also means more cooling much of the time. Power storage, power conversion, and cooling require weight and space. All of which are usually in short supply on a warship. Even if that space exists, the additional equipment and antennas must be installed without unduly affecting the ship's balance and center of gravity, and hence its seakeeping abilities. AEGIS operations

(click to view full)



In 2009, the US Congressional Research Services' "" report update (#RL32109) explained the potential impact:



"Multiple industry sources have briefed CRS on their proposals for modifying the DDG-51 design to include an active-array radar with greater capability than the SPY-1. If the DDG-51 hull is not lengthened, then modifying the DDG-51 design to include an improved radar would require removing the 5-inch gun to make space and weight available for additional equipment needed to support operations with the improved radar. Lengthening the hull might provide enough additional space and weight capacity to permit the 5-inch gun to be retained.75 Supporting equipment to be installed would include an additional electrical generator and additional cooling equipment.76 The best location for the generator might be in one of the ship's two helicopter hangar spots, which would reduce the ship's helicopter hangar capacity from two helicopters to one."



An October 2008 report from the right-wing Heritage Foundation draws on other sources to note that :



" SPY-1E [active array] radar could affect the stability of the upgraded Arleigh Burkes because the radar's phased-array pan els weigh more than the panels of the earlier SPY-1 radar, which it will replace. While the SPY-1E's weight is concentrated more in the panels, freeing more space below deck,[78] this greater weight would be added to the ship's superstructure. Combined with the DDG-51 s relatively narrow hull width and short length, this could cause stability problems, particularly when sailing in rough weather."



Obviously, those kinds of trades are less than ideal, but they may be necessary. Whether, how many, and which trades end being necessary, may well depend on which contender's design is chosen for AMDR.



AMDR: THE CONTENDERS



RAYTHEON



Raytheon on AMDR

click for video



Raytheon won. They went into AMDR with a lot of experience. First of all, they developed both the existing Dual-Band Radar's Radar Suite Controller, and the accompanying SPY-3 X-band radar that are mounted on DDG-1000 Zumwalt Class battlecruisers and CVN-78 Ford Class supercarriers. The dual X/S band system that will equip the vessel used to track missile launches and tests around the world also comes from Raytheon.



Phased array radars for wide-area air and ballistic missile defense are another strong point. Raytheon builds the AN/TPY-2 X-band radar used by the land-based , the 280 foot high X-band array on the floating , and the large land-based ballistic missile Upgraded Early Warning Systems like the AN/FPS-108 Cobra Dane and AN/FPS-115 PAVE PAWS. On the S-band side, the firm builds the S-band transmitters for Lockheed's SPY-1 radar on board existing American destroyers and cruisers. Unsurprisingly, Raytheon personnel who talked to us said that:



" leveraging concepts, hardware, algorithms and software from our family of radars provides a level of effectiveness, reliability and affordability to our proposed AMDR solutionThe challenge for all the competitors will be to deliver a modular design. The requirements demand that the design be scalable without significant redesignA high power active radar system requires significant space not only for the arrays themselves but also for the power and cooling equipment needed to support its operation. Finding space for additional generators and HVAC plants can be quite challenging for a backfit application. That is why power efficiency is a premium for these systems."



LOCKHEED MARTIN - LOST



Lockheed's AMDR-S

click for video



Lockheed Martin stepped into the competition with several strengths to draw on. Their AN/SPY-1 S-band radar is the main radar used by the US Navy's current high-end ships: DDG-51 Arleigh Burke class destroyers, and CG-47 Ticonderoga class cruisers. Lockheed Martin also makes the AEGIS combat systems that equips these ships, and supplies the advanced VSR S-band radar used in the new Dual Band Radar installations on board Ford class carriers. This strong S-band experience, and status as the supplier of the combat system that any DDG-51 fitting would have to integrate with, gave them leverage at multiple points. Some observers publicly wondered if they had so much leverage that the competition would become a mirage, especially since the US Navy insisted on keeping AEGIS as the combat system.



Nor are they devoid of X-band or ballistic missile defense experience. Their L-Band AN/TPS-59 long range radar has been used in missile intercept tests, and is the only long range 3D Radar in the Marine Air-Ground Task Force. It's related to the AN/TPS-117, which is in widespread service with over 16 countries. Then, too, the firm's air defense technology demonstrator's MFCR radar will integrate an active array dual-band set of X-band and UHF modules, via a common processor for data and signal processing.



It was a strong array of advantages. In the end, however, it wasn't enough.



NORTHROP GRUMMAN - LOST



NGC on AMDR

click for video



Northrop Grumman was a less obvious contender, despite its leadership position in advanced AESA active array radars for use on aircraft of all types and sizes. They've also developed unique software-driven land-based systems like the US Marines' new (G/ATOR), which is specifically architected to switch between a wide range of radar performance modes and requirements.



It's important to note that Northrop Grumman has shipboard radar experience. They're the prime contractor for the AN/SPQ-9B track-while-scan X-band radar that's guaranteed to be part of the initial AMDR set, and SPQ-9A/B radars already equip America's Ticonderoga Class cruisers, Nimitz Class aircraft carriers, America Class escort carriers, Wasp Class LHD amphibs, and San Antonio Class LPD amphibs. AN/SPQ-9Bs can also be found on Australia's Hobart Class Aegis air warfare destroyers.



On a less visible note, the firm has been working under several CRAD research programs from 2005 to the present, targeted at technology demonstrations, system risk reduction, and new integration techniques for advanced S-band shipboard radars. Finally, the firm has a partnership with Australia's CEA Technologies, which is developing an advanced AESA that equips Australia's upgraded ANZAC class frigates.



What did this team see as important? Beyond an open architecture approach, it was all about the SWaP:



"The ability to scale up to a potential future cruiser or down to a DDG-51 variant is fundamental to the Northrop Grumman radar architecture. Size, weight and power (SWaP) of the radar system are the key driversMinimizing the radar impact is key to an affordable surface combatant solution. We are focused on not just the radar technology, but to minimize the ship impact while allowing for scalable growth in the future. We are working closely with various elements in the Navy to address the ship impact of large AESA radars on the entire ship."



AMDR: CONTRACTS AND KEY EVENTS



FY 2014



Raytheon wins EMD phase. NGC's AMDR-TD

(click to view full)



OCT 22/13: PROTEST. Lockheed Martin filed a protest with the Government Accountability Office (GAO), arguing that they "submitted a technically compliant solution at a very affordable price. We do not believe the merits of our offering were properly considered during the evaluation process." Lawmakers from New Jersey, where Lockheed Martin Mission Systems and Sensors is located, had sent a letter to the Navy Secretary a few days ago criticizing the award to Raytheon. The Navy subsequently issues a stop-work order, while the GAO has until the end of January 2014 to give its verdict.



OCT 10/13: EMD. Raytheon Company announces that they've won, receiving a $385.7 million cost-plus-incentive-fee contract for the AMDR-S and Radar Suite Controller's (RSC) Engineering and Manufacturing Development (EMD) phase.



The base $157 million contract begins with design work leading to Preliminary Design Review, and will finish with system acceptance of the AMDR-S and RSC engineering development models at the end of testing. AMDR-S is the large S-band radar, while the RSC provides S- and X-band radar resource management, coordination, and an interface to Lockheed Martin's Aegis combat system. The full contract would produce initial ship sets that will work with Northrop Grumman's AN/SPQ-9B as their X-band counterpart.



This contract also includes options for low-rate initial production systems, which could bring the cumulative value to $1.6 billion. These options would be exercised after a successful Milestone C decision, which the Pentagon plans to make in FY 2017. Sources: Raytheon, Oct 10/13 release.



Raytheon wins EMD contract



FY 2013



Major program shifts.



JUNE 3/13: NAVSEA CLARIFICATIONS. NAVSEA replies to some of our program questions, and clarifies the program's structure. They clarifiy the GAO's wording concerning "AMDR initially using an upgraded SPQ-9B radar," by saying that the initial SPQ-9Bs will be off-the-shelf models, acquired under a separate program. SPQ-9A/B radars already equip America's Ticonderoga Class cruisers, Nimitz Class aircraft carriers, America Class escort carriers, Wasp Class LHD amphibs, and San Antonio Class LPD amphibs.



The SPQ-9B will still be integrated with AMDR-S, but there are some differences in implementation between it and AMDR-X, hence the additional software required. The result will effectively create DDG-51 FLight III and Flight IIIA ships, as the Navy has no plans to backfit AMDR-X to Flight III ships that get the SPQ-9B.



The remaining question is when a winner will be picked. The GAO said (q.v. March 28/13) that an EMD winner and development award was expected in March 2013, and we're past that. All NAVSEA would say is that the AMDR program office is still conducting evaluations. They also said that AMDR-X's acquisition strategy isn't set yet, which leaves the door open to a divided radar contract.



MAY 8/13: The US Senate Armed Forces Seapower subcommittee [PDF] regarding US Navy shipbuilding programs. An excerpt:



"The Navy is proceeding with the Air and Missile Defense Radar (AMDR) program to meet the growing ballistic missile threat by greatly improving radar sensitivity and longer range detection for engagement of increasingly complex threats. This scalable radar is on track for installation on DDG 51 Flight III ships to support joint battle space threat awareness and defense, including BMD, area air defense, and ship self defense. The AMDR radar suite will be capable of providing simultaneous surveillance and engagement support for long range BMD and area air defense. The Navy intends to introduce AMDR on DDG 51 Flight III in Fiscal Year 2016."



GAO documents have referred to AMDR's introduction in FY 2019, but procurement buys will begin in FY 2016.



APRIL 26/13: REAL COMPETITION? on the AMDR program. Beyond the materials in the GAO's report, discussions with the US Navy offer cause for concern. They quote AMDR program manager Capt. Doug Small as saying that AMDR will be just an evolution of Aegis, providing better performance for "only slight more" weight, power, and coolant demands, and "a fraction of the resources needed to run all of dual-band radar (DBR) or even existing Aegis SPY radars to conduct similar missions."



The SPY-3/ SPY-4 DBR comparison seems like a pretty big stretch, given that they haven't picked their AMDR radar yet, much less tested it. Article author Michael Fabey's concerns, on the other hand, lie in another area:



" .the Navy will have to take great pains to ensure the competitiveness of the AMDR program. The service can ill afford to have this effort be seen as just an extension of the "Aegis Mafia," often seen asthe automatic property of Lockheed, the combat system's creator and prime contractor throughout the decades."



It's a real dilemma. Commonality with an existing combat system makes cross-fleet upgrades much easier, while lowering overall maintenance and upgrade costs. In Aegis' case it also leverages work that has been and will be done on Ballistic Missile Defense modes. On the other hand, Aegis' existing inter-dependencies with Lockheed's own SPY-1 design are a stumbling block. Can the Navy really deliver AMDR on budget, while swapping in an S-band radar from another company? If they say yes and it's not actually doable, AMDR will flounder and may fail. If the Navy decides that they can't risk it, then the whole AMDR-S competition was a waste of time.



An AMDR-S award to Raytheon might still be thinkable if the Navy goes with the lesser standard of fleet combat system commonality, using the Raytheon combat system that drives the 3-ship DDG-1000 Zumwalt Class, and leveraging Raytheon's combat system and controller work integrating the CVN-78 Ford Class carriers' Dual-Band Radar.



APRIL 10/13: FY 2014 BUDGET. The President releases a proposed budget at last, the latest in modern memory. The Senate and House were already working on budgets in his absence, but the Pentagon's submission is actually important to proceedings going forward. See .



"Missile integration with AMDR-S radar for DDG 51 Flight III ships will include requirements review/updates and analysis, verification; technical documentation, design review and working group SME support, missile/radar integration, missile test hardware procurement, risk assessment, safety, test and evaluation planning, analysis, data collection. Deliverables include interface specs and engineering documents to support AMDR PDRs HW&SW (FY13) and CDRs HWEDM testing (FY15), interface specs and engineering documents to support AMDR/ACBNext for DDG 51 Flight III E3 Testing, Analysis and Reports. Missile variants: ESSM Block I; SM-2 Blk IIIB MU2, SM-6 Block I (Current Aegis Configuration)."



Meanwhile, the plans to spend 2013 working on interfaces that will let it work with AMDR. The Standard and ESSM programs will have related items on their plate, and Flight III destroyers will gain an interesting benefit from a discontinued carrier program. The AN/SPS-74(V) CVN Periscope Detection Radar program was canceled on Dec 17/12, with FY 2012 - 2013 funding directed to develop the algorithms and interface for the AN/SPQ-9B Radar instead.



MARCH 28/13: GAO REPORT. The US GAO tables its "". Which is actually a review for 2012, plus time to compile and publish. Its AMDR section gives a program baseline of $6.57 billion total to develop & field 22 radars. As one might imagine when comparing to last year's report (q.v. March 30/12), the program's $9.24 billion cost drop heralds some major shifts in the program.



The first 12 AMDR systems will use Northrop Grumman's existing SPQ-9B radar as their X-band component. According to the Navy, the SPQ-9B radar fits better within the Flight III DDG 51 s sea frame, and expected power and cooling. That's no surprise, given that the "Spook-9is already set to operate beside the S-band SPY-1D radar on Australia's smaller Hobart Class destroyers. The bad news is that additional software work will be required to integrate a 2nd radar (SPQ-9B) with the new active S-band radar. AMDR was already on the hook for about 1 million lines of developed code, and software development has bent quite a few DoD project schedules.



The Navy will also have to compromise on radar performance in several areas. The Navy has now settled on a forced scale-down from the 20-foot aperture needed to meet their AMDR specifications, to a 14-foot aperture that's the largest they can safely fit in the DDG-51 design. On the X-band front, SPQ-9B will eventually be replaced by a new X-band design for the last 10 units (13 - 22), but until AMDR-X arrives, the system won't perform as well in X-band against the most advanced threats.



Major program shifts



NOV 26/12: NGC. Northrop Grumman that their AMDR technology demonstration contract is done. The firm says that they achieved both contract objectives: demonstrating that the critical technology is mature, and advancing the design of the tactical system. Northrop Grumman also successfully completed far field range testing of the AMDR-TD prototype, which reportedly met performance goals and radiated at top power for all waveforms.



FY 2011 - 2012



Functional reviews from contenders. RFP proposals in. AMDR engagement

click for video



SEPT 10/12: NGC. Northrop Grumman that its AMDR prototype has successfully completed initial range testing. Near Field Range testing validated the AMDR's digital beam forming performance, tuning techniques, and reliability. Subsequent Far Field Range testing at Northrop Grumman's radar test site in Baltimore, MD included successful full-power operational demonstrations.



JULY 31/12: RFP PROPOSALS IN. Lockheed Martin announces that it has submitted its "AMDR-S" proposal. Northrop Grumman and Raytheon both confirmed to DID that they also submitted proposals. .



APRIL 2/12: NGC. Northrop Grumman that they've successfully finished AMDR's System Functional Review (SFR) in late December 2011, and Test Readiness Review (TRR) "several weeks later". SFR is a multi-disciplined technical review conducted to ensure that the system under review is technically mature enough to proceed into preliminary design. TRR assesses the readiness of the system for testing configuration items.



During the SFR, Northrop Grumman demonstrated digital beamforming and advanced tactical software modes, using its pathfinder early testing radar with a prototype radar suite controller to successfully detect and track airborne targets.



MARCH 30/12: GAO REPORT. The US GAO tables its "" for 2011. AMDR is scheduled to enter system development in October 2012, and the current program envisions $15.837 billion to develop and field 24 radar sets on DDG-51 Flight III destroyers.



Program officials believe that digital beamforming in a radar of AMDR's size will be the most significant technical challenge, and will likely take the longest time to mature. Unfortunately, that technology is necessary for AMDR's simultaneous air and ballistic missile defense mission. Meanwhile, a 14-foot version of AMDR-S is the largest radar they can safely fit within the DDG-51 destroyer's deckhouse, even though it would take a 20-foot diameter aperture to fully meet all of the Navy's specifications. The Navy is still discussing the precise size for AMDR-S in Flight III ships, and the design is supposed to be scalable up or down in size to fit on smaller or larger ships.



NOV 16/11: POWER PROBLEM. Jane's Navy International is reporting that with the new AMDR radar and could cost $3-4 billion each.



If that is true, it's about the same cost as a ship, in return for less performance, more vulnerability, and less future upgrade space. AMDR isn't a final design yet, so it's still worthwhile to ask what it could cost to give the Flight IIIs' radar and combat systems ballistic missile defense capabilities - R&D for the function doesn't go away when it's rolled into a separate program. Indeed, if the Flight III cost estimate is true, it raises the question of why that would be a worthwhile use of funds, and re-opens the issue of whether continuing DDG-1000 production and upgrades might make more sense. .



SEPT 19/11: RAYTHEON. the performance of its Gallium Nitride AMDR T/R modules, which demonstrated no degradation after more than 1,000 hours of testing. Raytheon is developing a technology demonstrator for the system's S-band radar and radar suite controller, and says that their testing figures exceed Navy requirements.



JUNE 12/11: GROWTH PROBLEMS? that AMDR's key platform may be hitting growth problems. Power, cooling, and weight distribution have always been seen as the most likely stumbling blocks to fitting AMDR on the DDG-51 hull, and:



"As the possible requirements and expectations continue to grow for the proposed DDG-51 Arleigh Burke-class Flight III destroyers, so is the concern among defense analysts and contractors that the U.S. Navy may once again be trying to pack too much into one shipAnd yet it is the need to field [AMDR] that is driving some of the additional requirements for the Flight IIIs"Sometimes we get caught up in the glamour of the high technology," Huntington Ingalls Industries CEO Mike Petters says. "The radars get bounced around. They get changed. Their missions get changed. The technology changes. The challenge is if you let the radars drive the ships, you might not get any ships built."



JUNE 7/11: RAYTHEON. that it has conducted a system requirements review (SRR) for AMDR Phase II beginning May 17/11. Their release does not describe it as successful, offering only the less categorical claim that the "Navy's feedback throughout the review was favorable," and pointing out that the firm "matured its design ahead of schedule, surpassing customer expectations." DID asked Raytheon about this. They said the review was successful, but they wanted to different phrasing for a change.



Raytheon is currently developing a technology demonstrator for AMDR's S-band radar and radar suite controller, and the firm demonstrated hardware from that pilot array during the review. The SRR also included Raytheon's understanding of AMDR's requirements, how its design and architecture meets those requirements, and Raytheon's its analysis of those requirements, including cost and performance trade studies. A System Functional Review will be held later in 2011.



JUNE 1/11: AMDR ISSUES. looks at AMDR, and adds some cost estimates and perspective on the program.



"AMDR is the brass ring for Navy radar programsCapt. Doug Small, program officer for Naval Sea Systems Command (Navsea), [says that] "We're working hard to balance a tough set of requirements for this radar with its costsBMD (Ballistic Missile Defense) targets drive radar sensitivity. There's no substitute for having detect-and-track [capability] at a long distance[But] To do simultaneous air defense [and BMD], you have to spend less time doing air defense. It's a radar resource issue[Fortunately,] The ability to create multiple beams digitally [digital beamforming] means you spend less time doing certain other functions." "



The article adds that Lockheed Martin demonstrated S-band digital phased-array antenna beam forming during recent NAVSEA tests of the Advanced Radar Technology Integrated System Test-bed, which combines multifunction S-band active phased-array radars. It's a joint U.S.-U.K. radar effort spearheaded by Lockheed Martin and BAE Systems, and Lockheed Martin's VP naval radar programs, Brad Hicks, says the technology is now ready to enter full engineering development.



MAY 19/11: RAYTHEON. that it has produced the first group of S-band transmit/receive (T/R) modules for the U.S. Navy's AMDR program.



FY 2009 - 2010



Initial studies, tech development contracts. CG-49: USS Vincennes

(click to view full)



SEPT 30/10: US Naval Sea Systems Command in Washington Navy Yard, DC solicits bids via the Federal Business Opportunities website, receives 3 offers, and issues 3 technology development contracts for the AMDR S-band radar and its radar suite controller (RSC). AMDR-S will provide volume search, tracking, ballistic missile defense discrimination and missile communications. The RSC will perform all coordination actions to ensure that both radars work together. This approach dovetails with the Pentagon's focus on competitive prototypes, as a way of reducing long-term risks of failed development and cost overruns.



Raytheon Integrated Defense Systems in Sudbury, MA received a $112.3 million fixed-price incentive (firm target) contract. Work will be performed in Sudbury, MA (81%), Fairfax, VA (18.3%), and New York, NY (0.7%), and is expected to be complete by September 2012 (N00024-10-C-5340). See also .



Lockheed Martin Mission Systems and Sensors in Moorestown, NJ receives a $119.2 million fixed-price incentive (firm target) contract. Work will be performed in Moorestown, NJ (86.2%); Clearwater, FL (5.5%); Fairfax, VA (3.5%); New Brighton, MN (2.5%); Clearfield, UT (1.3%); and Huntsville, AL (1%), and is expected to be complete by September 2012 (N00024-10-C-5358). See also .



Northrop Grumman Electronic Systems in Linthicum Heights, MD receives a $120 million fixed-price incentive (firm target) contract. This contract is incrementally funded, with $38.4 million placed on the contract at the time of award. Work will be performed in Linthicum Heights, MD (99.4%), and Arvonia, VA (0.6%), and is expected to be complete by September 2012 (N00024-10-C-5359). See also .



Tech development contracts



AUG 10/10: An opinion from the Information Dissemination article :



"I love Chris, and I don't think anyone in the Navy deserved their star more than Jim Syringbut is just a bit too much happy half-the-story for me. Here is how half the story gets toldThe real reason the Navy is dropping the VSR on DDG-1000 is because the Navy intends to putAMDR on the DDG-1000because the timeline works out. The thing is the Navy can't actually say this because there is no official AMDR program yet and the DDG-1000 isn't supposed to be a ballistic missile defense ship - remember? This story in Navy Times is what it is because when it comes to US Navy shipbuilding, the Navy under CNO Roughead is never completely honest with the American people about what the Navy is doing. Sorry if the truth hurts."



JUNE 2/10: DDG 1000 LOSES DBR. As expected, the Pentagon this week certifies that the DDG-1000 destroyer program is vital to national security, and must not be terminated, despite R&D loaded per-ship cost increases that put it over Nunn-McCurdy's legislated limit. There will be at least one important change, however: the S-band SPY-4 Volume Search Radar will be deleted from the DDG-1000 s DBR.



Performance has met expectations, but cost increases reportedly forced the Navy into a cost/benefit decision. The Navy would not release numbers, but reports indicate possible savings of $100-200 million for each of the planned 3 ships. The X-band SPY-3 has reportedly exceeded technical expectations, and will receive upgrades to give it better volume search capability. The move will save weight and space by removing SPY-4 aperture, power, and cooling systems, and may create an opportunity for Raytheon's SPY-3 to be upgraded for ballistic missile defense - or replaced by the winner of the BMD-capable AMDR dual-band radar competition.



The full DBR will be retained on the USS Gerald R. Ford [CVN 78] aircraft carrier, as the SPY-4 replaces 2 air search radars and will be the primary air traffic control radar. No decision has been made for CVN 79 onward, however, and AMDR's potential scalability may make it attractive there as well. | .



No DBR on DDG-1000



FEB 26/10: CRS REPORT. The US Congressional Research Service lays out what remains of AMDR's opportunity, in an updated report. From "" :



"The Navy's FY2011 budget submission calls for procuring two DDG-51s in FY2011 and six more in FY2012-FY2015. The two DDG-51s that the Navy wants to procure in FY2011 received $577.2 million in FY2010 advance procurement funding. The Navy's proposed FY2011 budget requests another $2,922.2 million in procurement funding for the two ships, so as to complete their estimated combined procurement cost of $3,499.2 million. The Navy's proposed FY2011 budget also requests $48.0 million in advance procurement funding for the one DDG-51 that the Navy wants to procure in FY2012, and $186.3 million in procurement funding for DDG-1000 program-completion costs. The Navy's FY2011 budget also proposes terminating the Navy's planned CG (X) cruiser program as unaffordable. Rather than starting to procure CG (X)s around FY2017, as the Navy had previously envisaged, the Navy is proposing to build an improved version of the DDG-51, called the Flight III version, starting in FY2016. Navy plans thus call for procuring the current version of the DDG-51, called the Flight IIA version, in FY2010-FY2015, followed by procurement of Flight III DDG-51s starting in FY2016. Navy plans appear to call for procuring Flight III DDG- 51s through at least FY2022, and perhaps until FY2031. Flight III DDG-51s are to carry a smaller version of the new Air and Missile Defense Radar (AMDR) that was to be carried by the CG (X). The Navy's proposed FY2011 budget requests $228.4 million in research and development funding for the AMDR. Detailed design work on the Flight III DDG-51 reportedly is to begin in FY2012 or FY2013."



JUNE 26/09: The Naval Sea Systems Command in Washington, DC issues 3 firm fixed-price contracts, covering initial concept studies for the (AMDR) S-band and Radar Suite Controller (RSC) only. Deliverables will include the S-band and radar suite controller conceptual design, systems engineering studies and analyses, and a technology development plan. This contract was competitively procured via the Federal Business Opportunities and Navy Electronic Commerce Online websites, with 3 offers received.



Northrop Grumman receives a $10 million contract. Work will be performed in Linthicum Heights, MD, and is expected to be complete by December 2009 (N00024-09-C-5398). See also .



Lockheed Martin Maritime Systems and Sensors in Moorestown, NJ, receives a $10 million contract. Work will be performed in Moorestown, NJ, and is expected to be complete by December 2009 (N00024-09-C-5312). See also .



Raytheon Integrated Defense Systems in Sudbury, MA receives a $9.9 million contract. Work will be performed in Sudbury, MA (94%); Fairfax, VA (4%); Bath, ME (3%); Andover, MA (3%); Tewksbury, MA (3%); and East Syracuse, NY (2%), and is expected to be complete by December 2009 (N00024-09-C-5313). See also .



Initial studies contracts



ADDITIONAL READINGS



BACKGROUND: AMDR



*FBO.gov (# N0002412R5315) - . Issued April 16/12, last modification May 14/13.

*USN Electronic Commerce Online - AMDR EMD Solicitation.

*GlobalSecurity.org -

*Raytheon - . Winner.

*Lockheed Martin feature, via WayBack -

*Northrop Grumman, via WayBack -

*US Navy - . AMDR's initial X-band counterpart.

*DID - Hybrid-Electric drive modifications might be needed, in order to solve the class' power problems.



NEWS & VIEWS



*US Congressional Research Services - .

*Aviation Week (June 12/11) - . Could have strong implications for AMDR.

*Aviation Week (June 1/11) -

*Military & Aerospace Electronics (June 29/09) -

*Defense News (Feb 2/09) - New Destroyer Emerges in U.S. Plans: Options Mulled As DDG 1000 Hits $6 Billion [dead link]. Includes AMDR coverage.

*DID Spotlight - . Covers the SPY-3/VSR combination aboard the new DDG-1000 Zumwalt class destroyers and CVN-78 Gerald R. Ford class aircraft carriers.
Full Post

No comments:

Post a Comment